Physlets run in a Java-enabled browser on the latest Windows & Mac operating systems.
If Physlets do not run, click here for help on updating Java and setting Java security.

Chapter 32: Electromagnetic (EM) Waves

Electromagnetic waves (also called electromagnetic radiation) are waves that obey Maxwell's equations. One of the consequences of Maxwell's equations is that there are electromagnetic waves that propagate at 3 x 108 m/s in a vacuum. This is precisely the speed of light in a vacuum! Therefore, all light—visible light, ultraviolet radiation, radio waves, microwaves, x-rays, gamma rays, and infrared radiation—is an electromagnetic wave. The difference between these waves is simply in the frequency (f ) or wavelength (λ). Since the frequency times the wavelength (f λ) is equal to the speed of propagation (which for light in a vacuum must be 3 x 108 m/s), if you know the frequency, you know the wavelength. This chapter examines propagating electric and magnetic fields and links them to the observable properties of light.

Table of Contents

Illustrations

Explorations

Problems

Optics TOC

Overview TOC

The OSP Network:
Open Source Physics - Tracker - EJS Modeling
Physlet Physics
Physlet Quantum Physics