Research and development of enhanced assessment tools for chemistry education

Thomas Holme Iowa State University

ACS DivCHED Examinations Institute

PERC 2011, Omaha, NE

A fundamental challenge

- Teaching is, at once, inherently personal and inescapably corporate.
- At present, the corporate interests in student learning are largely articulated in terms of assessment.

Exams Institute?

• How is it that chemistry has an Exams Institute?

A Short History (part 1)

- 1921-formation of Division of Chemical Education
- 1930 formation of Committee on Examinations and tests
 - Committee subsidized by:
 - General Education Board of the Cooperative Test
 - · Carnegie Foundation for the Advancement of Teaching

 • Dr. Ben Wood

A Short History – part 2

• 1934

A group of five Committee members released the first general chemistry test in three forms

COÖPERATIVE CHEMISTRY TEST

PART I. INFORMATION AND TERMINOLOGY Provisional Form 1934

A Short History (part 3)

- 1946 Ted Ashford appointed as Chair of the Committee
 - Institute is at Univ. of South Florida
- 1986 Ted Ashford retires
- 1987 Dwaine Eubanks appointed Director
 - Institute is at Oklahoma State (87-92) and Clemson (92-01)
- 2002 Tom Holme appointed Director
 - Institute is at UW-Milwaukee (02-08) and Iowa State (08 present)

The key constituencies

- Practitioners
 - Often motivated by practicality
- Chem Ed Researchers (TUES grant recipients)
 - Often motivated by validation challenges

Exam development

- · Chair is named
- · Committee is recruited
- First meeting sets content coverage
- · Items are written and collated
- Second meeting editing items, setting trials
- Trial testing in classes provides item stats
 Third meeting look at stats and set exam
- Meetings are held in conjunction with ACS National Meetings (or BCCE)
 - Partial reimbursement to volunteers

Gen Chem Exams

- Full Year Exam (2009, 2011)
- First Term Exam (2005, 2009)
- Second Term Exam (2006, 2010)
- 1st Term Paired Questions (2005)
- 2nd Term Paired Questions (2007)
- Conceptual (1st term, 2nd term, full year)
- Full year brief exam (2002, 2006)
- · All exams carry secure copyright
 - Released not published

Norms and reporting

- Norms are calculated on voluntary return of student performance data
- We have an interactive web site for score reporting for exams that do not yet have enough data to report a norm.
- People often use norm (percentile) to help students who transfer to other programs.

Teachable moments

 Because a sizeable fraction of the Chem Ed community uses (or at least trusts) ACS Exams, the characterization of the exams allows an avenue to educate about assessment issues.

Recently taught topics

- · Role of item complexity
- Item characteristic curves
- Item Order Effects
- Answer Order Effects
- Differential Item Functioning (DIF)
- Partial credit / polytomous scoring

Content vs. construct

- Tests demand that students complete tasks
- · Each item is a task
- Students need knowledge within the content domain (chemistry)
- Students need knowledge about how to organize their efforts (test taking)
- Cast this understanding in terms of item complexity.

Estimating task complexity elsewhere Paas & Van Merriënboer's 9-point scale (1994).

- 1 ~ very, very low mental effort
- 2 ~ very low mental effort
- 3 ~ low mental effort
- 4 \sim lower than average mental effort
- **5** ~ average mental effort
- **6** ~ higher than average mental effort
- 7 ~ high mental effort
- **8** ~ very high mental effort
- 9 ~ very, very high mental effort

Objective complexity rubric

Number & relative difficulty/complexity of component concepts or skills needed to master item

		easy	medium	difficult
ofina	1	1		
	ກ 2	2	1	
	3	3 – 4	2	
۵	4	5 – 6	3 – 4	1
	5		5 – 6	2
	6			3 – 4
	7			5 – 6

Data for each chemistry exam item

- Performance data (difficulty index)
- Expert-rated objective complexity
- Mental effort (hypothesized to represent the subjective complexity)

Three constructs of task complexity

- Complexity treated as a *psychological experience*.
 - Subjective complexity
- Complexity treated as a function of *objective task* characteristics.
 - Objective complexity
- Complexity treated as an *interaction* between task and person characteristics.

Factor analysis

- Factor Analysis finds a single factor with all PCA loading factors above 0.75
- Hypothesis: This factor represents the complexity of multiple-choice chemistry
- · Principal axis factoring and maximum likelihood factoring both reveal a single factor

Item design and complexity

- · If elements of complexity can result from either content or construct, where do ACS Exams items fall on the complexity scale?
- · Focus on conceptual questions.

Construct Complexity in ACS Conceptual Exams

- Does the number or type of elements in conceptual questions correlate to student performance?
- Three ACS Conceptual Exams were analyzed looking at the *number* and *type* of elements in the question
- · A variety of statistical analyses were carried out (software is Stata)

Initial Findings

- First term General Chemistry exam
 - Including a two-part answer is significant (more complex) (p=0.0103) when all answer components are analyzed together
- Second term General Chemistry exam
- Including a PNOM illustration in the stem is significant (more complex) (p=0.0254) when all stem components are analyzed together

 Second term General Chemistry Paired Questions (Conceptual Items)
- Model that counts all components shows that construct elements as a whole are statistically significant (p=0.0079)
- More components more complex lower performance Content is relevant here

- Some Gen Chem exams show no significant correlations

 Full year General Chemistry exam and First term General Chemistry Paired
 Questions (Conceptual Items)

 No statistically significant findings

Key Preliminary Conclusion

- The construct of conceptual questions on ACS exams is typically not causing students to struggle with questions
- There are no specific question elements that consistently cause student difficulty
- ACS Exams are testing content more than students' ability to navigate the structure of exam questions
 - Recall process items with poor construct usually do not survive the trial test phase.

What can researchers use?

- · High quality individual instruments
 - Paired question exams
- A support system for program assessment.
 - Criterion referencing

Paired questions exams

- One each for first semester and second semester General Chemistry.
- 40-item exam, 55 minutes
 - Allows for use of an ACS Exam and a local exam.

Example Pair

- An example of what is meant by a paired question (from trial test – not on released exam.)
- We anticipate this image may be used in publications.

C1.	A student observes a temperature increase of ΔT_i when she mixes 100 mL of a 1.0 M solution of NaOH with a 100 mL of a 1.0 M solution of HCI in a calorimeter. If she then mixes 100 mL of 1.0 M NaOH and 300 mL of 1.0 M HCI a temperature change ΔT_i would be observed. The second temperature change, ΔT_i , is expected to be							
	(A)	the same as the first.						
	(B)	twice that of						
	(D)	half that of the first.						
T1.	What is the temperature change in the calorimeter in experiment 2? Experiment HBr KOH \(\Delta T \) on mixing							
	#1		100 mL	100 mL	6.2 °C			
		*1	4.0 M	2.0 M				
		#2		2.0 M 100 mL 3.0 M	?			
	(A)		4.0 M 100 mL	100 mL	?			
	()	#2	4.0 M 100 mL	100 mL	?			
	(B)	#2 3.1 ℃	4.0 M 100 mL	100 mL	?			

Looking at 1st Term PQ Exam

- During trial testing it was clear that performance was not unilaterally better for algorithmic items.
- So where are students better?

Item Conceptual Conceptual Traditional Tr Coarse 0.519 0.524 0.764 0.454 Grain Look Based on 3073 student 0.460 0.715 performances from 12 schools 0.613 0.244 0.482 0.636 A 50/50 split! 0.433 Average Difficulties: Conceptual: 0.653 Traditional: 0.598

Has something changed?

- The first paired questions exam was released in 1997 in response to evidence that students were lacking conceptual knowledge.
- 12 years later, data suggests responses (e.g., PNOM figures in textbooks) has changed the dynamic.
 - We cannot distinguish if this means students are solving conceptual problems algorithmically.

Criterion referencing for program assessment

- · Requires criteria
- At the college level, they don't exist.
- · Build a consensus content map.
- Similar to using backward design1.

1: Understanding by Design, Grant P. Wiggins, Jay McTighe

Anchoring Concept

- Use "big ideas" or anchoring concepts to organize content across disciplines.
- Build levels with finer grain size down to the point where exam items are generally written.

Levels of criteria map

Level 1

Anchoring Concept

Level 2

• Enduring Understanding

Level 3

• Sub-disciplinary articulation

Level 4

· Content details

Process for setting map (so far)

- Begin from EMV conference ideas
- Focus Group (Mar08): Level 1 + Level 2
- Workshop (Jul08): Level 2 + Level 3 (General) Focus Group (Aug08): Level 2 + Level 3 (Organic)
- Workshop (Mar09): Level 3 + Level 4 (General)
- Focus Group (Aug09): Level 2 + Level 3 (Organic)
- Workshop (Mar10): Alignment (General)
- Focus Group (Mar 10): Level 2 + Level 3 (Physical)
- Focus Group (Jul 10): Level 3 Organic
- Focus Group (Dec 10): Level 3 + Complexity Organic
- Focus Groups (Mar 11): Level 3 (Analytical, Biochem, Physical)

Step 2: Alignment

- Look at current items from ACS Exams and align them to Level 3/4
- Process guided by psychometric experts.
- Can include both skills and content
- Ultimately can help define specifications for future ACS Exams.

Comparison of General Chemistry and Organic Coverage Orgo 1991 Orgo 2002 Or

Summary

- Exams Institute has a stable and trusted process for exam development
 - Process is grass roots
 - Ballpark exam usage is in 15-20% of classes
 - In some places, exams help with articulation issues between 2-year and 4-year schools
- Over the past ~5 years we have begun to engage in more research questions
 - Deliver exams electronically.
 - Enhance validation work.

Acknowledgements

- Kristen Murphy (UWM)
- Karen Knaus (UC-Denver)
- April Zenisky (UMass)
- ISU: Jacob Schroeder (now at Clemson), Heather Caruthers, Mary Emenike, Megan Grunert (now at W. Michigan), Anna Prisacara, Diana Merritt
- Many exam writing committee volunteers

NSF: DUE-0618600, 0717769, 0817409, 0920266

taholme@iastate.edu