Position Vectors in 3-d: Student Difficulty With Spherical Unit Vectors in Intermediate E&M

Introduction

- Student difficulties in introductory mechanics have been studied extensively (e.g. see any paper by McDermott, Schaffer, et. al. of the last 15 years) [1]
- Even student difficulties in introductory E&M have begun to be studied more extensively
- But there are few studies of student difficulties in intermediate E&M
- This poster presents results from a study of student difficulties with position vectors and spherical unit vectors in Griffith's level E&M [2]]

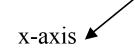
Motivation

• My students

-were very competent with spherical *coordinates* (r, θ, ϕ) -but still didn't seem to "get" spherical *unit vectors* $\hat{r}, \hat{\theta}, \hat{\phi}$

• Goals of intermediate E&M:

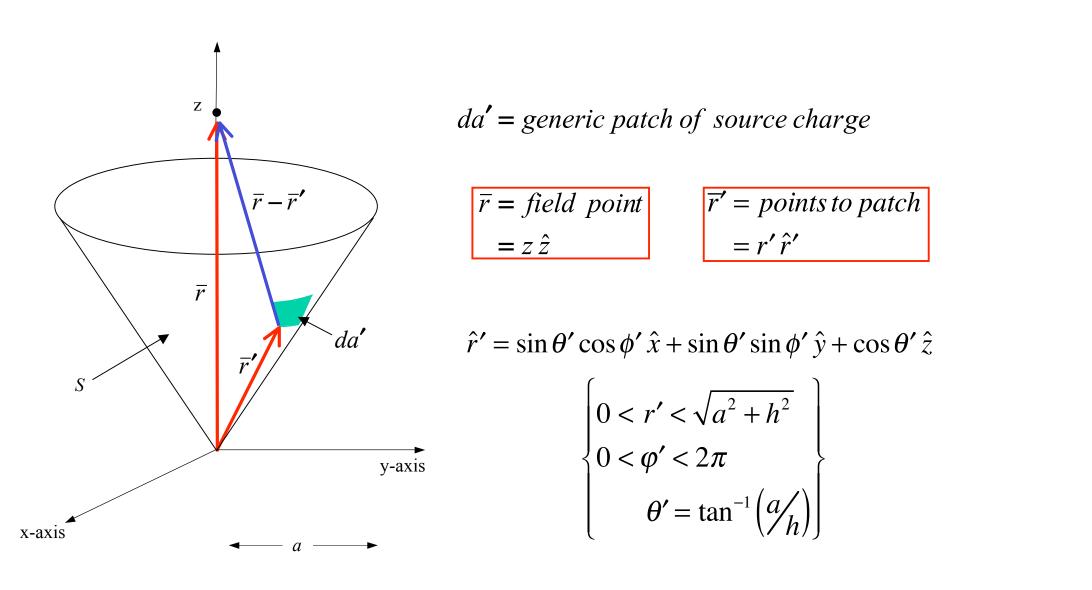
–understand the math and physics of Maxwell's Integral equations (Electric & Magnetic) -functionally understand (i.e. be able to set up) 3-d vector integrations to calculate fields & potentials:


$$\overline{E}(\overline{r}) = \frac{1}{4\pi\varepsilon_o} \iint_{S} \frac{\sigma(\overline{r'})da'}{\left|\overline{r} - \overline{r'}\right|^2} \cdot \frac{\overline{r} - \overline{r'}}{\left|\overline{r} - \overline{r'}\right|}$$
$$V(\overline{r}) = \frac{1}{4\pi\varepsilon_o} \int_{C} \frac{\lambda(\overline{r'})dl'}{\left|\overline{r} - \overline{r'}\right|^2}$$

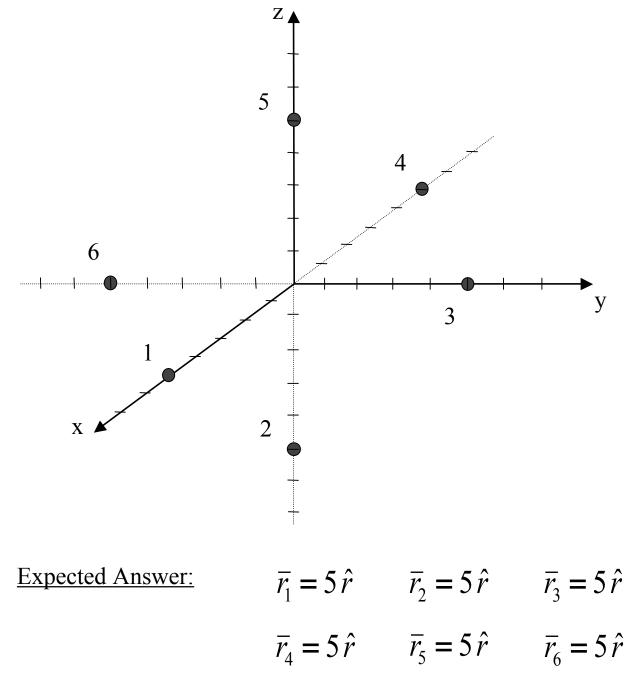
#1) Integrate over *source* charge distribution (λ , σ , ρ) modeled as point: - particles (λ) - patches (σ) - chunks (ρ) • pointed to by \bar{r}' #2) Find field or potential at the *field point* pointed to by \overline{r}

• Position vectors \overline{r} and $\overline{r'}$ are **ubiquitous** in Maxwell's Integral equations

-students should be able to write down \overline{r} and $\overline{r'}$ for any given non-Cartesian geometry -start with spherically symmetric geometries


the cone.

Brant Hinrichs Drury University, 900 N. Benton Ave., Springfield, MO


Example

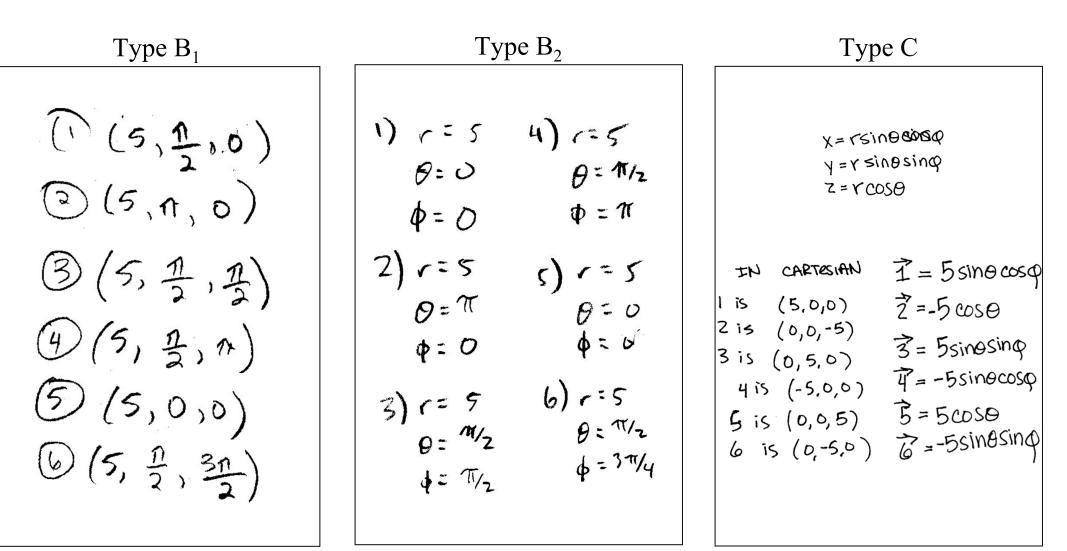
A hollow cone of radius a, and height h, is centered on the z-axis with its tip at the origin and it's base in the + z direction. It has uniform surface charge density, σ , on its curved sides, but no charge on its base. Find the electric potential at a point on the z-axis above

Concept Test

Please write \overline{r} in terms of \hat{r}, θ , and ϕ for the following six different points. Show all work.

Explanation

z-axis v-axis


 $\overline{r} = r \hat{r}$ $r = \sqrt{x^2 + y^2 + z^2}$ $\hat{r} = \sin\theta\cos\phi\,\hat{x} + \sin\theta\sin\phi\,\hat{y} + \cos\theta\,\hat{z}$

 \hat{r} always points radially outward from the origin - changes direction depending on θ and ϕ - doesn't point in a constant direction like $\hat{x}, \hat{y}, \hat{z}$ For example, for point 1, $\theta = \pi/2$ and $\varphi = 0$, so $\hat{r} = \sin \frac{\pi}{2} \cos 0 \hat{x} + \sin \frac{\pi}{2} \sin 0 \hat{y} + \cos \frac{\pi}{2} \hat{z}$ $= \hat{\lambda}$

While for point 2, $\theta = \pi$ (ϕ doesn't matter), so $\hat{r} = \sin \pi \cos \phi \, \hat{x} + \sin \pi \sin \phi \, \hat{y} + \cos \pi \, \hat{z}$ $=-\hat{z}$

Institution Small private in the upper PLA Small public upper midw southwest. LP-ug Large public southwest, g LP-g

 $\vec{r} = 5\vec{r} + \frac{\pi}{3}\vec{\theta} + 0\vec{\phi}$ 2 r= 50 + 46+03 了、ドニラテ+星百+亭中 4. F=52+ 70+ ma S. F= 5F+ OG+ OF $6, \vec{r} = 5\vec{r} + \frac{5}{2}\vec{G} + \frac{5}{2}\vec{\phi}$

Data Collection

TABLE 1. Schools from which data was collected and details of how the concept test was given at each school

	Textbook	N^{a}	How Given	When Given		
L						
ate liberal arts college	Pollack &		As homework	After completing both Chp2		
er midwest,	Stump [3]	12 of 12	for credit	(Vector Calculus) in class and		
				relevant homework from Chp2		
ic university in the				After completing both lecture on		
west,	Griffiths	6 of 6	Quiz	Section 1.4 (curvilinear coordi-		
			-	nates) and relevant homework		
ic university in the			Volunteers	During the last week of a full year		
undergraduates	Griffiths	14 of 26	who stayed	of intermediate E&M		
C			after class			
ic university in the			Volunteers	During the last week of the first		
graduate students	n/a	14 of 21	who stayed	year of graduate school, in their		
			after class	quantum course		

^a Indicates how many of the students officially registered for the course actually took the concept test.

Typical Incorrect Answers

Explicitly include $\hat{r}, \hat{\theta}, \hat{\phi}$

Type A

Type A₂

1. 51,00,至白 2. 5r, 0 \$, TO 3. 51, 芝角, 芝白 小. 58、下角、芝台 5. 5ŕ, 0\$, 0Ô 6. 5î, 3TO, 20

Type A₃ Finterms of r, a. \$ r= sind sind &+ sindcos & y + cos d 2 3 - sind 65 = 2+653 0050 g- sind & 2 = -sin 3, + cosa 3 $(\hat{r}, \hat{e}, \hat{\phi})$ 1. デ: (5, 王, 0) 2. i = (5, T, 0)3. $\bar{\varsigma} = <5, \frac{\pi}{2}, \frac{\pi}{2} >$ 4. $\bar{t}_{4} = <5, \frac{\pi}{2}, \pi > \pi$ $5, \bar{r}_{5} = < 5, 0, 0 >$ $c. r_{o} = <5, \frac{\pi}{2}, -\frac{\pi}{2} >$

Do <u>not</u> include $\hat{r}, \hat{\theta}, \hat{\phi}$

Results

TABLE 2. Results for each school and composite totals for the concept test shown previously

			<i>r, θ,φ</i> all							
School	Ν	Correct	A1	A2	A3	B1	B2	С	Other	correct ^c
PLA	12	0	6	2	1	2	1	0	0	6
SP	6	0	3	0	1	1	0	1	0	3
LP-ug	14	1	6	3	0	1	2	0	1	6
LP-g	14	0	6	1	1	4	0	2	0	7
	46	1	21	6	3	8	3	3	1	22
	100%	2%	46%	13%	7%	17%	7%	7%	2%	48%

^b Number of students at each school who made this kind of error. ^c Number of students at each school who got all r, θ , and ϕ values correct for all six points.

Observations

- Only one person got the correct answer!
- Graduate students did no better than undergraduates
- The results don't seem to depend on text, teacher, year in school, type of school, class size, etc.
- Nearly half of all students put answer A₁
- About twenty percent just listed r, θ , ϕ
- Seventy percent (A+correct+other) explicitly included unit vectors in their answers
- Half of all student had difficulty determining correct values for the spherical coordinates themselves
- Students don't understand what it means to express a vector as a linear superposition of unit vectors $(A_2,$ A_3)
- Students misapply methods from Cartesian coordinates (A_1) , (i.e. pattern matching)

$$\overline{r} = (x, y, z) \qquad \overline{r} = (r, \theta, \phi)$$
$$= x \hat{x} + y \hat{y} + z \hat{z} \qquad \neq r \hat{r} + \theta \hat{\theta} + \phi \hat{\phi}$$

Acknowledgements

Miki & Eads Hinrichs for encouragement, Drury for a sabbatical to collect data, and the four faculty who let me into their classes

References

- [1] L. C. McDermott and E. F. Redish, "Resource Letter: PER-1: Physics Education Research," Am. J. Phys. 67, 755-767 (1999).
- [2] D. J. Griffiths, *Introduction to Electrodynamics*, 3rd Edition, Upper Saddle River, New Jersey: Prentice Hall, 1999.
- [3] G. L. Pollack and D. R. Stump, *Electromagnetism*, 1st Edition, San Francisco, California: Addison-Wesley, 2002.