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Abstract.  We previously showed[1] that despite teaching with interactive engagement techniques, the gap in 
performance between males and females on conceptual learning surveys persisted from pre- to posttest, at our 
institution. Such findings were counter to previously published work[2]. Our current work analyzes factors that may 
influence the observed gender gap in our courses. Posttest conceptual assessment data are modeled using both multiple 
regression and logistic regression analyses to estimate the gender gap in posttest scores after controlling for background 
factors that vary by gender. We find that at our institution the gender gap persists in interactive physics classes, but is 
largely due to differences in physics and math preparation and incoming attitudes and beliefs. 
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INTRODUCTION 

Previously, we have observed a difference of 
about 10 percentage points in both the pre- and 
posttest performance of males and females on the 
Force and Motion Concept Evaluation[3] at our 
institution, averaging over seven semesters of the 
introductory physics course[1]. The posttest gender 
gap exists in both partially interactive and fully 
interactive courses, though the size of the posttest 
gap varies from semester to semester (from 5% to 
15%). Previous work[4] suggested that differences in 
student background and preparation may contribute 
to the persistence of the gender gap. When students 
were grouped according to their pretest scores, the 
average posttest scores of males and females in each 
group were not significantly different (p>0.1), 
though males did consistently score higher in each 
group than females. 

In order to identify factors that may contribute to 
the persistence of the gender gap, we continue to 
analyze student background factors that may 
influence performance on the conceptual learning 
survey. We use two types of regression analysis 
(multiple regression and logistic regression) to 
estimate the impact of student background factors on 
conceptual test performance. We find that the gender 
gap in conceptual posttest scores is substantially 
accounted for once prior physics and mathematics 
understanding and incoming attitudes and beliefs are 
taken into account. 

METHODS 

The data in the following studies were collected 
from six offerings (fall 2004 to spring 2007) of the 
first semester, calculus-based mechanics course at 
the University of Colorado (CU) and represent over 
3000 students. These are large-enrollment courses 
with 400 to 600 students. Each semester was taught 
by a different instructor, and all six instructors were 
male. All six classes used interactive engagement 
techniques, some to a higher degree than others. 
Each of the six classes employed student discussions 
around ConcepTests[5] in lecture, online homework 
systems[6], and voluntary help-room sessions on 
problem-solving homework. Three of the six classes 
used Tutorials in Introductory Physics[7] and 
Learning Assistants[8] during a one-hour per week 
recitation, while the remaining three classes held 
more traditional recitation sections. There is no 
laboratory associated with this course. 

The student population in the introductory course 
is about 25% female, about 50% engineering majors, 
with over 80% white. Only about 6% of the students 
who enroll in introductory physics are declared 
physics majors, and 66% of those students change 
majors after the first semester. 

Of primary interest in this study is to what degree 
differences in the backgrounds of male and female 
students contribute to the observed gender gap. To 
that end, data have been gathered on students� 
background knowledge and preparation for college 
physics, as well as their conceptual performance in 



the course, shown in Table 1. Except for FMCE and 
CLASS (attitudes and beliefs)[10] results, all data 
were collected from the Office of Planning, Budget, 
and Analysis at CU, rather than self-reported. 

   
TABLE 1. Data collected and the variables they measure. 
The * indicates that the males� average is significantly 
higher than the females� average.  

Variables Data Collected 
Physics conceptual 

understanding at the end 
of the semester 

FMCE posttest* 

Prior physics conceptual 
understanding FMCE pretest* 

Prior academic 
achievement High school GPA 

Prior mathematics 
understanding 

Combined Math Score* [9] 
 (SAT-Math*, ACT-Math*, 

2 CU placement exams) 

Course preparation for 
college physics 

Yrs. high school physics* 
Yrs. high school calculus 

Prior attitudes and beliefs 
about physics and about 

learning physics 
CLASS pretest* 

Demographics 

Gender  
Class Standing  

Ethnicity  
Declared Major 

 
The assessments used in this study only measure 

student performance on these instruments � however 
we use them as a proxy measurement of student 
understanding and attitudes and beliefs upon entry 
and exit. We recognize these instruments may be 
measuring more (e.g. test-taking ability), and may 
differ by gender. The work of several researchers 
suggests that differences by gender on conceptual 
instruments may indicate something other than 
differences in physics understanding.[11-13] While 
these studies question the validity of these measures, 
we note: a) we are using the standard measures that 
have been adopted by the community and b) we are 
analyzing shifts on these instruments, which allows 
us to normalize students against themselves. 

Not all of the above data are available for all 
students. Of the 3,205 students that enrolled in 
introductory physics during the semesters in this 
study, data on all variables was available for only 
1,027 students. These 1,027 students make up the 
sample used in the analysis. The students in the 
sample are distributed about equally among each of 
the six semesters. It is important to point out that the 
percentage of females in this sample is 29% (higher 
than in the population of all students) and the 
average course grade of students in the sample is 
significantly higher than that of students not in the 

sample (<GPAsample>=2.9, <GPAnot-sample>=2.4, 
p<0.01). While not completely representative, this 
subsample suggests that we are underestimating the 
gender gap of all students. 

RESULTS: Multiple Regression 

Using the background and demographic variables 
in Table 1, we model the posttest scores using 
multiple regression[14]. The prediction equation  
(Eq. 1) is used to estimate the difference in posttest 
scores between a male and female for background 
variables held equal. However, due to the nature of 
our data, notably non-Gaussian distributions[15], we 
cannot reliably interpret the statistical significance of 
the results, as they are likely to be biased. We do 
interpret the results of the regression analysis 
qualitatively, noting which trends exist. In this way, 
we can get a sense of whether the gender gap can be 
accounted for by factors other than gender. 

The posttest scores are modeled according to the 
equation, 

 ∑
=

×+×+=
N

k
kk VARbFEMALEbaFMCEPOST

2
1 (1) 

where FMCEPOST is the posttest score, FEMALE is 
1 for females (0 for males), and VARk are the other 
background variables included in the model and any 
cross terms between FEMALE and other variables. 
The multiple regression analysis estimates the 
coefficients for each term, i.e. the bk's .   

The results are shown in Table 2, which contains 
the coefficient estimates as well as the model-level 
statistics. The Multiple R2 (the fraction of variation 
in posttest scores accounted for by the variation of 
the variables in the model) is 0.44. 

 
TABLE 2. Coefficient estimates and model-level 
statistics for the final regression model.  
Model-Level Statistics   
Multiple R-squared  0.44 
F statistic p value  <0.001 
   
Predictors  b 
Intercept  32.9 
Female  -9.2 
FMCE Pretest  0.6 
Combined Math Score  7.2 
CLASS Pretest  0.3 
2004 Fall Semester  1.3 
2005 Spring Semester  -5.6 
2005 Fall Semester  -8.7 
2006 Spring Semester  -2.9 
2006 Fall Semester  -0.9 
Female*FMCE Pretest  0.2 

 
While all variables in Table 1 were examined, the 

final best-fit model only includes variables that 



control for prior physics and mathematics 
understanding, prior attitudes and beliefs, the 
semester the student was enrolled, and an interaction 
term between FEMALE and the pretest score. 
Although we have no further information about 
specific aspects of each semester that could 
contribute to the differences, the size of the semester 
variables demonstrates that there are considerable 
differences by semester, even after other prior factors 
are accounted for. The interaction term is the product 
of the two variables, FEMALE and FMCEPRE, and 
allows the slope of the pretest variable to differ for 
males and females. This term suggests that the 
pretest score differently predicts the posttest score 
for males and females. 

This model allows us to estimate the difference 
between a male�s and a female�s posttest scores, 
controlling for several other factors. The difference 
in posttest scores is given by 

 

 .2.02.9 FMCEPREFM ×−=−  (2) 
 

The average pretest score for this sample of students 
is 30.3. The gender difference for a male and a 
female, each with the average pretest score (all other 
variables equal) is 3.2 points. This is a substantial 
reduction from the 10.7 point difference observed by 
subtracting the average male and female posttest 
scores. The effect size[16] is reduced from 0.39, 
when no background variables were controlled, to 
0.11, when measures of student background are 
controlled for. Using multiple regression analysis, 
7.5 points of the 10.7 point gender difference, or 
70%, can be attributed to differences in male and 
female backgrounds. 

While the final model includes many variables 
that one might suspect would influence posttest 
scores, there are several variables that are not 
included. Variables that were found to not 
substantially impact the posttest score or gender gap 
beyond those variables in the final model were: years 
of high school physics, years of high school calculus, 
high school GPA, declared major, ethnicity, and 
interaction terms between FEMALE and all other 
variables. This is not to argue that these factors do 
not matter, but rather that either they are represented 
by other variables (e.g. pretest score makes years of 
high school physics less significant) or the variance 
among these variables was too small (e.g. ethnicity). 

RESULTS: Logistic Regression 

Given the distribution of data, the multiple 
regression analysis only allows for qualitative 
interpretations. One way to analyze the data 
statistically, given the non-normal distribution of 
data, is to use logistic regression analysis[17]. While 

using this method allows us to make statistical 
claims, we lose the ability to predict students� actual 
posttest score and can only predict whether they will 
score above some threshold. To perform the analysis 
the FMCE posttest is converted into a categorical 
variable that equals 1 if the posttest score is above 
60% and 0 if the posttest score is below 60% [18].   

We observe that 64% of the males and 49% of the 
females score above 60% on the FMCE posttest. 
These percentages are significantly different (via χ2, 
p<0.01). This difference is the gender gap that we are 
concerned with in the logistic regression analysis. 

The posttest data are modeled according to the 
equation, 
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where odds(X) is defined as the probability of X 
divided by the probability of not-X [17]. Given that 
the gender gap in this analysis is the difference in 
odds of scoring above 60% for males and females, 
we are interested in whether the difference in odds 
can be explained by factors other than gender. The 
odds for a male and a female, all other variables 
being equal, are related according to the equation,1 
 

 MF oddsgodds ×=  (4) 
 

where g = 1be . The logistic regression analysis 
estimates the coefficients of each variable, which 
then allows a prediction of each student�s odds of 
scoring above 60%. We are ultimately interested in 
whether the FEMALE variable is significantly 
different from zero (as indicated by the p value) and 
whether g is less than, greater than, or equal to 1. The 
final regression model is presented in Table 3. 
 

TABLE 3. Coefficient estimates and model-level 
statistics for the final logistic regression model.  
Model-Level Statistics   
Pseudo R-Squared (Nagelkerke�s) 0.45 
Likelihood Ratio p value <0.001 
   
Predictors b p value 
Intercept -2.93 <0.001 
Female -0.23 0.19 
FMCE Pretest 0.08 <0.001 
Combined Math Score 0.55 <0.001 
CLASS Pretest 0.02 <0.001 
2004 Fall Semester 0.14 0.59 
2005 Spring Semester -0.68 0.01 
2005 Fall Semester -0.75 0.01 
2006 Spring Semester -0.10 0.71 
2006 Fall Semester -0.06 0.81 

                                                
1 oddsF = odds(FMCEPOSTF > 60%) 



The final model here is the same as the multiple 
regression model (Table 2 and Eqn. 1) except the 
logistic regression model does not include the 
interaction term (as it was not significant). Before 
any background variables are taken into account, the 
factor relating the odds of males and females is g = 
0.5. The final estimate of g, all other variables held 
constant, is 

 

 .8.0 MF oddsodds ×=  (5) 
 

g is just slightly smaller than 1 (and not statistically 
different from 1), meaning that the odds for males 
and females are statistically equal. Using logistic 
regression analysis, we find that about 57% of the 
gender gap in odds is accounted for by prior physics 
and math knowledge and prior attitudes and beliefs. 

DISCUSSION AND CONCLUSIONS 

Both the multiple regression and the logistic 
regression analyses confirm that a substantial 
fraction of the gender gap can be accounted for by 
differences in males� and females� preparation and 
background coming into the introductory course, and 
is not explicitly due to student gender. Other 
researchers have found that these same factors, prior 
physics experience[19] and math understanding[20], 
influence conceptual performance and course grade. 
Though, we point out that only about 45% of the 
variance in our posttest scores is explained by the 
final models. Other factors that could influence the 
posttest score, such as student motivation, self-
efficacy, study habits, socioeconomic status, specific 
aspects of curriculum implementation, and testing 
bias, have not been included.  

In neither analysis has the gender gap been 
completely accounted for. Using multiple regression, 
70% of the gender gap in posttest scores is accounted 
for by background, while using logistic regression, 
57% of the gender gap in odds is accounted for by 
background. Both analyses suggest that even after 
accounting for background differences between 
males and females, a small gender gap remains. 

While the classes studied are introductory courses 
with no expectation of prior knowledge of physics 
(there are no prerequisites for this course), those 
students who arrive to the class with greater 
background knowledge (higher pretest scores) are 
more likely to achieve high posttest scores. Such an 
arrangement of a class plays to certain student 
backgrounds and when those backgrounds are 
correlated with particular demographic groups, it 
demonstrates bias. Recognizing that student 
preparation in physics or mathematics is a means by 
which this bias is propagated allows us, as 

researchers and educators, to proactively address the 
challenges of the gender gap in physics. 
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