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Richard Feynman famously stated that “nobody understands quantum mechanics”[1]. Of
course, he was referring to the many strange, unintuitive foundational aspects of quantum theory,
such as the origins of indeterminism or state reduction during measurement according to the
Copenhagen interpretation. Despite these underlying fundamental mysteries, the theory has
remained the cornerstone of modern physics. Most physicists have taken quantum mechanics as
undergraduates, only to repeat it in their first year of graduate school. It is generally assumed
that after all this instruction, students have become certified quantum mechanics, able to solve
the Schrédinger equation, manipulate Dirac bras and kets, calculate expectation values, and
most importantly, interpret their results in terms of real or thought experiments. The title of
this article refers to this sort of functional understanding quite distinct from the foundational
issues alluded to by Feynman.

Extensive testing and interviews demonstrate that a significant fraction of advanced under-
graduate and beginning graduate students, even after one or two full years of instruction, still
are not proficient at these skills. They often possess deep-rooted misconceptions about quantum
formalism such as the meaning and significance of stationary states, meaning of expectation
value, properties of wave functions, and quantum dynamics. Even students who excel at solv-
ing technically difficult questions are often unable to answer qualitative versions of the same
questions.

A growing number of researchers have begun to investigate and address issues related to
student understanding of quantum mechanics [2, 3, 4, 5], borrowing heavily from tools and
methods developed for introductory level physics [6]. In this article we motivate the need for
physics education research in quantum mechanics by illustrating some of the most pervasive
difficulties students have. We then survey tools that are being developed to help improve and
deepen student understanding of this important subject.

1 Universal Nature of Student Misconceptions

Quantum mechanics is often one of the last courses an undergraduate physics major takes. In-
structors generally assume that by the time students enter their classroom, they have learned all
of the problem solving, reasoning and self-monitoring skills they will need. Investigations sup-
port just the opposite conclusion [5, 7]. For example, while many students in advanced quantum
mechanics courses learn to solve the time-independent Schrodinger equation with complicated
potentials and boundary conditions, many display deep-seeded confusions about quantum dy-
namics that are largely conceptual in nature [3, 4, 5, 8, 9]. Misconceptions in other areas are
abundant as well. Investigations by the authors [5] and others [8] show that most of these diffi-
culties are universal, i.e., independent of background, teaching style, textbook, and institution.
The patterns of incorrect notions are analogous to those that have been well-documented for
introductory physics courses [6].

2 Examples of Student Misconceptions

Several studies have investigated misconceptions related to quantum mechanics in modern physics
courses [3, 4, 9]. Here we illustrate examples of student difficulties in quantum mechanics, iden-
tified using a research-based written survey administered to eighty nine undergraduates and
more than two hundred first-year physics graduate students from seven different universities [5],



and followed up by numerous in-depth interviews. Topics covered by the survey include gen-
eral properties of wave function, its time dependence, probabilities for measurement outcomes,
expectation values for energy and other observables and their time dependence.

One question on the survey asked students to write down the most fundamental equation in
quantum mechanics. Only 32% of students indicated the time-dependent Schrodinger equation
HU = ili O /0t (or equivalently, defining commutation relations); by contrast, 48% of students
wrote down the time-independent Schrodinger equation: HV = EW. We note that Schrodinger
received his Nobel prize for the former, not the latter, equation [10]. As we shall see in the
questions below, students’ obsession with HVU = BV is closely linked to a number of difficulties
and misconceptions about quantum mechanics.

Question 1: Consider the following statement: “By definition, the Hamiltonian acting on

any allowed state of the system W will give the same state back, i.e., HU = EU, where E is the
energy of the system.” Explain why you agree or disagree with this statement.

Figure 1 summarizes the responses that students gave, along with their “branching ratios”.
The correct answer was given by 29% of students: the statement is true only if W is a stationary
state. Among the incorrect answers, a full 39% wrote that the statement is true unconditionally.
Typically, these students were supremely confident of their answers. For example, one student
wrote: “Agree. This is what 80 years of experiment has proven. If future experiments prove this
statement wrong, then I'll update my opinion on this subject.”

A total of 11% of the students believed that any statement involving a Hamiltonian H acting
on a state U constitutes a measurement of its energy. Armed with this philosophy, some agreed
with the statement, believing that HW¥ should yield FW¥, rendering the statement true. Others
disagreed, stating that the right side of the equation has collapsed after the measurement so
HVY = E,4,, where 1), is the stationary state to which the wavefunction collapsed.

A fraction of students (10%) claimed that the statement is true only if H is not explicitly
time-dependent, and that for time-independent Hamiltonians the energy of the system is always
conserved and hence HV = EW. This statement is incorrect since ¥ need not be an eigenstate
of H, even if H is time-independent.

This next question illustrates student misconceptions about quantum dynamics in an infinite
square-well potential and interpretation of expectation value.

Question 2: The wave function of an electron in a one-dimensional infinite square well of
width a, z€(0,a), at time ¢ = 0 is given by W(z,0) = /2/7¢1(x) + \/5/TP2(x), where ¢y(x)
and ¢o(z) are the ground state and first excited stationary state of the system. (¢,(z) = 4/2/a

sin(nmz/a), E, = n®r?h*/(2ma®) where n = 1,2,3...) (Note: A potential energy diagram was
provided.)

(a) Write down the wave function ¥(z,t) at time ¢ in terms of ¢, (z) and ¢o(x).

(b) You measure the energy of an electron at time ¢ = 0. Write down the possible values of
the energy and the probability of measuring each.

(c) Calculate the expectation value of the energy in the state W(x,t) above.

Student answers to these questions are summarized in Figure 2. In response to Question
2(a), only 43% of the students provided a correct response. (Note that responses with incorrect
intermediate steps were considered correct). The most common mistake (31%) was to write a



common phase factor for both terms, e.g., U(z,t) = ¥(z,0)e /" (There were many other va-

rieties of common phase factors represented as well.) Follow-up interviews confirm that students
had trouble distinguishing the properties of stationary and non-stationary states. Several stu-
dents thought that time dependence took the form of a decaying exponential. During interviews,
some of them explained their choice by insisting that the wave function must decay with time
because “that is what happens for all physical systems”. Interestingly, 9% of the students wrote
that W(z,t) should not have any time dependence whatsoever; during interviews, some tried to
justify their claim by pointing out that the Hamiltonian is time-independent.

Although Question 2(b) was the easiest on the survey with 67% correct responses, compar-
ison with the response for Question 2(c) is particularly revealing. It shows that students can
calculate probabilities for the outcome of measurements, but that many were unable to use that
information to determine an expectation value. Many students who answered 2(b) correctly
(including those who also answered (c) correctly) calculated (E) by brute-force methods: first
writing (E) = [12° U* HWdz, then expressing W(z,t) in terms of the two energy eigenstates, then

~

acting H on the eigenstates, and finally using orthogonality to obtain the final answer. Some
got lost early in this process while others did not remember some other mechanical step, e.g.,
taking the complex conjugate of the wave function, using orthogonality of stationary states or
not realizing the proper limits of the integral.

Interviews reveal that many did not know or recall the interpretation of expectation value
as an ensemble average, and did not realize that expectation values could be calculated more
simply in this case by taking advantage of their answer to Question 2(b). Some believed that the
expectation value of energy should depend on time (even those who correctly evaluated ¥(x,t)
in Question 2(a)).

In another question, students were given a potential energy diagram for a finite square well
and asked to draw qualitative sketches of (I) the ground state wavefunction and (II) any one
scattering state wavefunction. They were asked to comment on the shape of the wave function in
all the three regions. Only 57% provided the correct response for part (I) and 17% for part (II).
Even students who had performed well on quantitative questions on related topics in homework
and examinations and imposed the boundary conditions correctly, sketched wavefunctions with
discontinuities or cusps. Roughly 10% of students incorrectly sketched exponentially decreasing
wavefunction inside the well. In part (II), several students made comments such as “the particle
is bound inside the well but free outside the well”. The comments displayed confusion about
what “bound state” means and whether the entire wavefunction is associated with the particle
at a given time or the parts of the wavefunction outside and inside the well are associated with
particle at different times.

Other questions posed to students confirmed that many of the difficulties students have
are both conceptual and deep-rooted. For example, analogous difficulties were also observed
in response to conceptual questions about Larmor spin precession, especially with regard to
the expectation values of spin components and their time dependence, given a particular initial
state [5]. Interestingly, course instructors were surprised and noted that on similar but exclusively
quantitative calculations, student performance was significantly higher. In this sense, qualitative
understanding of quantum mechanics is much more challenging than facility with the technical
aspects. Similar to “plug and chug” problems in introductory physics, strict quantitative exercises
in quantum mechanics often fail to provide adequate opportunity for reflection upon the problem
solving process and drawing meaningful inferences. As discussed later below, learning tools that
combine quantitative and qualitative problem solving can be effective in helping students learn
quantum mechanics.



3 Origins of Student Misconceptions

Why is student misunderstanding of quantum mechanics concepts “quantized”, i.e., collapsed
into a few distinct patterns, independent of institution, textbook or instructor? The universal
nature of student misconceptions about quantum mechanics is somewhat surprising, given the
abstract nature of the subject. Misconceptions in introductory-level physics are often viewed as
originating from incorrect world-views (e.g., watching too many Road Runner cartoons). But it
is hard to explain conceptual difficulties in quantum mechanics in this fashion.

Shared misconceptions in quantum mechanics can be traced in large part to incorrect over-
generalizations of concepts learned earlier [5]. The following examples show difficulties which are
due to correct or incorrect over-generalizations from classical physics:

e Many students believe that if the expectation value of a physical observable is zero in the
initial state, its expectation value cannot have any time-dependence. This misconception is
an over-generalization of a similar misconception in introductory physics that if the velocity
of an object is zero, its acceleration must be zero as well. (Of course, if this were true, a
car could never travel from rest.)

e Many students believe that an object with a label z is orthogonal to or cannot influence an
object with a label y, e.g., they believe that eigenstates of S, are orthogonal to eigenstates
of S,. This overgeneralization originates from properties of classical vectors.

A second mechanism is failure to distinguish between closely related concepts. Below are
two examples of commonly held (mistaken) beliefs about quantum mechanics that are consistent
with many of the incorrect answers given by students.

e Many students believe that the expectation value of any Hermitian operator is time-
independent if the initial state is an eigenstate of that operator. This belief can be regarded
as the over-generalization of two true statements: (1) The expectation value of any Hermi-
tian operator is time-independent if the state is a stationary state, and (2) The statement
is true for any state if the operator commutes with the Hamiltonian.

e Many students believe that after measurement of any physical observable, the system gets
“stuck” in that eigenstate forever unless an external perturbation is applied. Again, the
statement is true only for observables whose operators commute with the Hamiltonian,
but students seem to have overgeneralized this property of measurement to include all
observables. (Incidentally, some students believe the opposite, i.e., if one waits long enough,
the time-evolution will guarantee that the wavefunction will go back to the original state
before the measurement.)

4 Improving Student Understanding

How can instruction in quantum mechanics be modified to reduce student difficulties? As we
will see below, being precisely aware of the difficulties students typically face while learning
quantum mechanics constitutes an important first step in developing strategies that can help
students. In the section below, we will discuss learning tools available for quantum mechanics
and how tutorials embedded within a coherent curriculum are well suited to direct targeting of
the misconceptions that have been identified through research.



4.1 Quantum Visualization Tools

Fast and realistic computer-based visualization tools can play a key role as effective learning tools
in a variety of advanced-level topics including quantum mechanics. The computational power
of common desktop and laptop computers is more than sufficient to run these simulations, and
many heretofore inaccessible topics (including those from current experimental and theoretical
research) in quantum mechanics can now be discussed and exemplified in concrete terms. Most
can be run within web browsers and are written using meta-languages and virtual machines that
ensure that the software is platform-independent and adaptable.

One of the first quantum simulations for instructional purposes was created in 1967 by Gold-
berg [11], who simulated scattering of Gaussian wave packets off of different wells and barriers.
Computer-generated probability densities were displayed on a cathode-ray tube, photographed,
and then the successive frames were turned into a movie. The images and films that resulted
have been referenced and/or reprinted in numerous textbooks, even to this day. The “picture”
books of S. Brandt and H. Dahmen [12] and the Visual Quantum Mechanics books by Thaller
[13] continue this approach, including more scenarios depicting time development with successive
images or using QuickTime movies, respectively. This work was extended by the Consortium
for Upper-level Physics Software (CUPS) Series quantum mechanics book by Hiller Johnston,
and Styer [14], and more recently by the book Physlet Quantum Physics [15], both of which
extensively use computer-based interactive simulations.

More recently, the Open Source Physics (OSP) project [16] has developed a freely available
and open source Java library and easy-to-use vocabulary for the development of physics software
and the distribution of Web-based curricular material. This technology, originally designed for
the teaching of computational physics, enables the development of curricular materials by allow-
ing the user to change and store initial conditions and associated narrative for simulations. These
exercises can then be combined into a topical unit, and multiple topical units can be combined
into a curriculum module. The OSP framework has been used to write and organize curricular
material from computational physics, classical mechanics, electromagnetism, statistical physics,
and quantum mechanics. (The OSP code library, documentation, and curricular materials can
be downloaded from http://www.opensourcephysics.org.) The materials for quantum mechanics
span the curriculum from introductory topics to more advanced research-based topics such as
quantum-mechanical revivals and fractional revivals, shown in Figure 3, which have been of
recent theoretical and experimental interest [17]. This example uses the OSP QMSuperposi-
tion program which inputs the expansion coefficients of a superposition of energy eigenstates
(here a Gaussian wave packet in the infinite square well) and time evolves the state according
to W(x,t) = 3, catbp(z)e™Fnt/" This analytic time evolution allows for a fast and accurate
depiction of the state even at long time scales at which numerical solutions often fail.

In addition to “classic” simulations of quantum-mechanical time evolution, many computer-
based simulations have been developed that cover more contemporary topics such as quantum
information, as well as foundational issues that are usually skipped in standard sequences. For
example, the OSP SPINS program extends David Mclntyre’s open source Java applet [18] by
allowing simulated experiments to be stored and run easily. The user interface can be customized
making the program useful for focused tutorials such as the simulation of single or multiple
measurements on spin-1/2 particles or even a spin-1/2 interferometer used to simulate a quantum-
mechanical Which-Way? (Welcher-Weg) experiment.



4.2 Quantum Tutorials

Teaching with technology, without a sound pedagogy, does not automatically yield significant
educational gains. Evidence suggests that students can benefit from the same types of interven-
tions that have proved successful at introductory levels [6]. In particular, activities that engage
students and force them to challenge their beliefs and understanding of quantum mechanics have
the greatest chance of success. Tutorials provide carefully developed activities that do not re-
quire a total revamping of instructional methods to have an impact; rather, they can be effective
supplements to traditional instruction.

The tutorial approach consists of three main components:

e Student difficulties (determined from prior research) are first elicited by posing carefully
designed tasks

e Students are guided through tasks designed to overcome these difficulties and organize their
knowledge.

e Support is decreased gradually as students develop self-reliance.

The following features of tutorials make them particularly suited for teaching quantum
mechanics:

e They are based upon research in physics education and pay particular attention to cognitive
issues.

e They employ visualization tools to help students build physical intuition about quantum
phenomena.

e They consistently keep students actively engaged in the learning process by asking them
to predict what should happen in a particular situation and then providing appropriate
feedback.

e They attempt to bridge the gap between the abstract quantitative formalism of quan-
tum mechanics and the qualitative understanding necessary to explain and predict diverse
physical phenomena

e They can be used in class by instructors once or twice a week as supplements to lectures
as group activity or outside of the class as homework or as a self-study tool by students.

e They consist of self-sufficient modular units that can be used in any order that is convenient.

Daniel Styer [19] and Zollman et al. [3] have proposed that quantum concepts be introduced
much earlier in physics course sequences than is traditional. To assist instructors, Zollman et
al. [3] have developed the “Visual Quantum Mechanics” (VQM) suite, targeted to high school
and college students, which integrates interactive visualizations with inexpensive materials with
tutorial worksheets in an activity-based environment. Examples of instructional units in VQM
include quantum tunneling, luminescence, laser adventure, and potential energy diagrams. Fig-
ure 4 shows an example from VQM [20] that lets students explore scattering problems in one
dimension. Students can calculate transmission coefficients for one-dimensional scattering po-
tentials, view scattering states, and compute probability densities. The quantities are expressed



in real units, yet students can change, for example, Planck’s constant to observe its consequence
for this problem.

Redish et al. [4] have developed “A new model course in applied quantum mechanics,” a
collection of resources incorporating tutorials and visualization tools to teach modern physics
concepts to science and engineering students. Examples of instructional units [20] include the
photoelectric effect, wave-particle duality, spectroscopy, shape of wave function, light-emitting
diodes, band structure theory, and quantum models of conductivity. In the band structure
tutorial [20], students are first asked to “solve” the time-independent Schrédinger equation for
a single finite square well potential, using a program called “Energy Band Creator”. A second
well is then added, and students observe hybridization or bonding/anti-bonding states. Then, a
larger number of “atoms” are considered, and students discover that the allowed energy states
form bands (see Figure 5).

We have been developing and evaluating Quantum Interactive Learning Tutorials (QulILTSs) [5],
which are designed for upper-level undergraduate and beginning graduate students. They have
been designed to engage students actively in the learning process and help them build links be-
tween the abstract formalism and the conceptual aspects of quantum physics, without compro-
mising the technical content. QulLTs are based on the exemplary introductory physics tutorials
developed by the University of Washington group [21] and combine conceptual and quantitative
problem solving.

The topics for QulLTs cover fundamental as well as contemporary areas. Specific topics
covered so far include the time-dependent and time-independent Schrodinger equation, expecta-
tion values, time-development of the wave function, measurement of observables, the uncertainty
principle, the double-slit experiment and which-path information, Mach-Zehnder interferome-
ters, Stern-Gerlach experiments, Larmor precession of spin, quantum key distribution, spin-1/2
systems, and product spaces.

Below we discuss excerpts of a QulLT designed to deal with time development [22]. The
QulILT begins by asking students to predict the time dependence of two states, one stationary
and the other non-stationary, for an electron in an infinite square well. If students choose an
overall phase factor for the non-stationary state wave function, they are asked to predict the
probability density at time ¢, i.e., the absolute square of the wave function. As described above,
more than half of the students will choose an incorrect answer. The tutorial then asks students
to compare their predictions against a computer simulation (Figure 6) for the time-evolution
of the probability densities for those cases. The simulations have been adapted from the Open
Source Physics simulations [16].

Watching the probability density not vary with time for the stationary state (Figure 6a)
but explicitly vary with time for the non-stationary state (Figure 6b), students are forced to
confront any inconsistencies in their thinking. Research on learning suggests that when students
reach this juncture, they are challenged to resolve the discrepancy between their initial prediction
and observation, and that students are highly receptive to guidance that will help them resolve
their conceptual difficulties and build a more robust knowledge structure. Within an interactive
environment, students then learn by example that the Hamiltonian governs the time evolution of
the wavefunction so the eigenstates of the Hamiltonian are special with regard to time evolution,
but that not all allowed states are energy eigenstates. Students must answer questions that
relate to a variety of concrete examples to help organize their knowledge, and they receive
prompt feedback. Later, concept maps are introduced that summarize the connection between
different relevant concepts and principles. Then, students work on “paired” problems which use
similar concepts as the tutorial problems but for which the contexts are different and no help is



provided. The “paired” problems serve the dual purpose of helping students develop self-reliance
and providing instructors feedback on the effectiveness of QulLTs.

The following is a brief excerpt from a quantitative QulLT on spin-1/2 systems. The tutorial
breaks down the overarching problem into multiple-choice questions. In the full implementation,
students will choose an answer on a computer, and are directed to appropriate feedback based
on their choices.

Question 18: For a spin-1/2 system with the Hamiltonian Hy = C(5? — S2) (where C' is a
constant), which one of the following is a basis that will yield Hy as a diagonal matrix?

Choices: (a) [mg, m,), simultaneous eigenstates of S, and gf‘ (b) |s,m.), simultaneous
eigenstates of 52 and S.. (c) |s,m,), simultaneous eigenstates of S* and S,. (d) |s,my,), simul-
taneous eigenstates of 52 and S,, where n points in an arbitrary direction in space.

Feedback: (a) No. It is impossible to construct such a state which is a simultaneous eigen-
state of S, S and S, because these operators do not commute with each other. (b) Correct! In
the basis consisting of the simultaneous eigenstates of 52 and S, the Hamiltonian is a diagonal
matrix. (c) No. The Hamiltonian does not commute with S, whose eigenstates are characterized
by quantum number m,. (d) No. Although 52 and S, commute with one another, in general,
an eigenstate of S, is not automatically an eigenstate of S, (and hence ]3[0).

4.3 Real Quantum Experiments

Over the last few years, many new experimental labs have been initiated that expose students to a
variety of contemporary topics. For example, Galvez et al.[23] describe a set of five experiments
in quantum optics that can be set up for about $35,000. Topics include single-photon self-
interference, quantum erasure, and projective quantum measurements. Havel et al. [24] describe
a number of quantum information processing experiments that can be performed using standard
and widely available NMR spectrometers. Such experiences can serve to cement student knowl-
edge and understanding of quantum mechanics as well as stimulate interest in relating quantum
mechanics to “student observables”. Greenstein and Zajonc’s fascinating book [25], suitable
for undergraduate courses as well as practicing scientists, is full of descriptions of experiments
related to foundations of quantum mechanics and their possible interpretations.

5 Online Resources

The dissemination power of the World Wide Web through powerful search engines, databases, and
more recently, digital libraries has made it easy to make effective educational tools widely avail-
able. In physics and astronomy, the stewardship role within the National Science Digital Library
(NSDL, http://nsdl.org) is held by the ComPADRE digital library. ComPADRE stands for Com-
munities for Physics and Astronomy Digital Resources in Education (http://www.compadre.org).
This digital library is a result of the partnership of the AAPT, AAS, AIP/SPS, and APS and
funding from the National Science Foundation. ComPADRE’s goal is to aid teachers and learn-
ers in finding and using high-quality resources tailored to their specific needs. The ComPADRE
digital library consists of several collections. The quantum mechanics collection is called The
Quantum Exchange with the url: http://thequantumexchange.org. What makes ComPADRE
particularly effective is that the material is peer reviewed, contains cross links with other Com-
PADRE collections such as the physics education research collection, and has a federated search



feature (ability to perform one search in multiple libraries/databases/collections). This com-
bined search engine allows a user to search for learning materials from multiple online collections
and receive integrated results with a single search request. Collections currently searched are
ComPADRE, MERLOT, the Physlet/OSP Database, the PADS Database, and the collections
harvested by the NSDL. For example, all of the quantum mechanics materials developed by the
Open Source Physics (OSP) project is accessible via ComPADRE Quantum Exchange search: osp
or open source physics and has an easy to use vocabulary which is appropriate for digital
libraries such as ComPADRE.

6 Summary

The teaching and learning of quantum mechanics currently stands at the fortuitous crossroads of
advances in experimental, theoretical, computational and education research. Physics education
research has matured beyond the introductory level, and researchers have begun to investigate
and improve the quality of student understanding of quantum mechanics. The guidance provided
by research-based learning tools has the potential to increase the number and proficiency of
students, especially women and other underrepresented groups, to pursue advanced degrees and
careers in physical science and engineering.



Figure Captions

Figure 1: Breakdown of student response to Question 1.
Figure 2: Breakdown of student response to Question 2.

Figure 3: An initially (¢ = 0) localized Gaussian wave packet (zo = L/2 and py = 80m)
in a one dimensional infinite square well is visualized at one-quarter the revival time: T, /4.
By this time (for the simulation we have set L = h = 2m = T,., = 1), the wave packet has
already spread encompassing the entire well only to reforms into two highly correlated copies of
itself at the center of the well, but with each copy having the opposite momentum distribution.
This “Schrodinger cat” state is characteristic of fractional revivals, while at the revival time
the packet will exactly reform to its ¢ = 0 configuration. The packet is visualized using both
the position- and momentum-space wave functions (using magnitude-phase representation where
the color represents the phase of the wave functions), the position-space probability density, a
“quantum carpet” (which shows the history of the packet’s evolution, past to present along the
t axis and where brightness represents amplitude), and the expectation value of x and p with
time.

Figure 4: An example from Visual Quantum Mechanics [3, 20] that lets students explore
scattering in one dimension.

Figure 5: An example from Ref. [20] that lets students explore energy bands. Students
can start with one energy well, then add more wells and observe changes in the energy levels.
With the 10 wells shown in the figure, one can observe the emergence of energy bands (shown as
horizontal strips).

Figure 6: An example from the QulLT [22, 16] that lets students learn that the probability
density for the stationary state does not depend on time (see the time-lapse pictures in Figure
6(a)) but the probability density for the non-stationary state depends on time (see the time-lapse
pictures in Figure 6(b)).
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Question I: Is it always true that H'Y = EWY ?
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Open the simulation by double-clicking the green arrow associated with this exercise. Shown is the wave
function for an electron in the one-dimensional infinite square well at time ¢+ = 0 given by #(x,0) =
ﬁsin(ﬁmz /L) for which in the simulation i = 2m = L = 1. Click on the time-development to evolve

the wave function in time.

(V) Does |¢p(z. 1) for a given = change with time in the simulation?
(a) Yes.
(b) No.

(c) I do not know what I should be looking at in the simulation.

3. Now open the simulation (double-click the green arrow) and choose the initial wave function
e, 0) = ‘/gi,b;(:r} - \,/gwg{:.-:}. Watch the time evolution of |¥{z.t). Is the time evolution
of this wave function consistent with what you predicted earlier? Explain.

Rz}

e e S o [ |
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