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INTRODUCTION

 
Many students (and faculty!) find upper

thermodynamics challenging and confusing

especially in terms of its idiosyncratic mathematics

5].  Yet we love physics because it enables us to 

understand the world around us using mathematics. As 

part of the Paradigms in Physics Project, we have 

developed a sequence of activities that bring fun back 

into thermodynamics.  Five activities in our 

and Entropy course help students to connect 

thermodynamic and mathematical concepts, especially 

partial derivatives, with concrete reality.

In this 2013 PERC session, attendees had a hands

on opportunity to try out these activities.

begins with a brief description of each activity. The 

reader will find complete instructions for setting up 

(easy) and using these activities in the classroom on the 

Paradigms website [6] as well as further discussion in 

the papers cited below. This paper will conclude with a 

summary of how the session’s two discussants (AG 

and JFW) saw these activities through the lenses of 

their separate research perspectives. 

Ice Calorimetry

Our students’ first experience in 

Entropy is a laboratory experiment measuring the 

latent heat of fusion of ice and the heat capacity of 

water.  We give students a resistive heater, a styrofoam 

cup, a scale, a multimeter, a thermometer, and some ice 
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INTRODUCTION 

Many students (and faculty!) find upper-division 

thermodynamics challenging and confusing—

atic mathematics [1-

].  Yet we love physics because it enables us to 

understand the world around us using mathematics. As 

part of the Paradigms in Physics Project, we have 

developed a sequence of activities that bring fun back 

ctivities in our Energy 

course help students to connect 

thermodynamic and mathematical concepts, especially 

partial derivatives, with concrete reality. 

In this 2013 PERC session, attendees had a hands-

on opportunity to try out these activities. This paper 

begins with a brief description of each activity. The 

reader will find complete instructions for setting up 

(easy) and using these activities in the classroom on the 

[6] as well as further discussion in 

This paper will conclude with a 

summary of how the session’s two discussants (AG 

and JFW) saw these activities through the lenses of 

alorimetry 

Our students’ first experience in Energy and 

is a laboratory experiment measuring the 

latent heat of fusion of ice and the heat capacity of 

water.  We give students a resistive heater, a styrofoam 

cup, a scale, a multimeter, a thermometer, and some ice 

and water, and ask them to measure how much ene

is required to first melt the ice and then to warm up the 

water. This experiment is sketched in Fig.

energy is measured with freshman physics concepts, 

using the multimeter. Students find the latent heat of 

melting and specific heat of water, us

of the energy required to melt the ice and the slope of 

the temperature with respect to energy added.

Students further analyze their data to find the 

change in entropy of the system during this heating 

process, using the thermodynamic defi

 

�� � � � ��quasistatic
�  

where – �� is a small amount of energy added to the 

system by the heater, and the quasistatic

reminder that the ice water needs to be thoroughly 

FIGURE 1: (a) Sketch of the ice calorimetry experiment 

performed on the first day of class. (b) Solution to a “name

the-experiment” activity in which students are asked to 

imagine an experiment measuring 

commonly point out the connection in the second name

experiment activity that this experiment is the same as they 

did in the first week of class. 

 

, Tevian Dray*, Mary Bridget 

*Department of Physics, Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331 

Physics, University of Maryland, 8082 Baltimore Ave, College Park, MD 20740 

Department of Math, Xavier University, 3800 Victoria Parkway, Cincinnati, OH 45207 

tanding what a partial 

derivative represents may be key to reducing the anxiety associated with this topic. In this session, participants engaged with a 

sequence of activities designed to elucidate the mathematics of thermodynamics through multiple representations of partial 

derivatives. Activities include: experiments that provide exemplars of measuring thermodynamic quantities involving partial 

thought experiments where students design ways to measure particular partial derivatives representing 

hold specific quantities fixed, and an 

algebraic formulation of a partial derivative chain rule.  Our discussants, Ayush Gupta and Joseph Wagner, each comment on how 

their different research perspectives can contribute to and are necessary for a holistic understanding of what happens during this 

and water, and ask them to measure how much energy 

is required to first melt the ice and then to warm up the 

water. This experiment is sketched in Fig. 1. The 

energy is measured with freshman physics concepts, 

using the multimeter. Students find the latent heat of 

melting and specific heat of water, using measurements 

of the energy required to melt the ice and the slope of 

the temperature with respect to energy added. 

Students further analyze their data to find the 

change in entropy of the system during this heating 

process, using the thermodynamic definition of entropy 

 (1) 

is a small amount of energy added to the 
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stirred as the heating is performed. This 

gives our students their first exposure to entropy in our 

course. 

Rubber bands 

After we introduce Maxwell relations, midway 

through the course, we do an experiment.  Students 

measure the change in internal energy and entropy 

when a rubber band is isothermally stretched, using the 

Maxwell relation derived from the Helmholtz free 

energy, which is 

������� � �������� 

where �is the tension in the rubber band, and 

length. This relation connects a derivative of the 

tension with respect to temperature with a derivative of 

the entropy with respect to length.  This allows 

students to numerically integrate to find the change in 

entropy for a finite isothermal stretch. This experiment 

requires students to experimentally evaluate partial 

derivatives and to integrate experimentally measured 

quantities. This reinforces the idea that these 

mathematical manipulations describe concrete physical 

reality. 

For more detail, see the recently published paper 

describing this activity [7]. 

Name the Experiment

Three times during the course we have “name

experiment” activities. We ask student groups to 

describe and sketch an experiment that would measure 

a given thermodynamic partial derivative

the-experiment activities require students to make use 

of operational definitions of thermodynamic quantities, 

articulate how they would hold a given variable 

constant, and (in the later activities) perform 

manipulations on derivatives in order to find a quantity 

that is easier to measure. 

These activities work synergistically with the 

laboratory experiments described above. Students often 

recognize that they have sketched an experiment 

similar to one that they actually performed

example, consider the derivative 

derivative is closely related to the heat capacity, which 

students measure in the ice calorimetry lab. A name

the-experiment solution is shown in Fig.

diagram of the experiment they performed.

stirred as the heating is performed. This experiment 

gives our students their first exposure to entropy in our 

 

After we introduce Maxwell relations, midway 

through the course, we do an experiment.  Students 

change in internal energy and entropy 

when a rubber band is isothermally stretched, using the 

Maxwell relation derived from the Helmholtz free 

(2) 

is the tension in the rubber band, and L is its 

length. This relation connects a derivative of the 

tension with respect to temperature with a derivative of 

the entropy with respect to length.  This allows 

students to numerically integrate to find the change in 

etch. This experiment 

requires students to experimentally evaluate partial 

derivatives and to integrate experimentally measured 

quantities. This reinforces the idea that these 

mathematical manipulations describe concrete physical 

see the recently published paper 

Name the Experiment 

Three times during the course we have “name-the-

experiment” activities. We ask student groups to 

describe and sketch an experiment that would measure 

artial derivative [8]. Name-

experiment activities require students to make use 

of operational definitions of thermodynamic quantities, 

articulate how they would hold a given variable 

constant, and (in the later activities) perform 

vatives in order to find a quantity 

These activities work synergistically with the 

laboratory experiments described above. Students often 

recognize that they have sketched an experiment 

similar to one that they actually performed. As an 


�� ��⁄ �. This 

derivative is closely related to the heat capacity, which 

students measure in the ice calorimetry lab. A name-

experiment solution is shown in Fig. 1, next to the 

erformed. 

Partial Derivative Machine

This year we added a new week of hands

activities that precede the Energy and Entropy course, 

which are intended to teach students the mathematics 

they will need in order to work with differentials and 

partial derivatives. These activities (discussed in more 

detail in two separate papers in these Proceedings

10]) use a mechanical analogue of thermodynamics, in 

which two distances and two forces play the roles of 

entropy, volume, temperature, and pressure. This 

allows students to grapple with partial derivatives (both 

literally and figuratively) in a field of physics that is 

comfortable. We use this elastic system to illustrate and 

teach everything from partial derivatives, total 

differentials, the thermodynamic id

is not thermodynamic), Maxwell relations and 

Legendre transforms. 

Chain Rule Diagrams

Many homework and exam problems in 

thermodynamics expect students to be fluent in 

manipulating partial derivatives through the repeated 

application of various chain rules. The common 

experience of becoming totally lost in this forest of 

equations contributes to students’ fear of this subject. 

Partial derivative diagrams are common to many 

multivariable calculus texts [11, 12].  We have adapted 

partial derivative diagrams to the language of 

differentials—which are anathema to many 

mathematicians. The reader can try using the chain rule 

diagram in Fig. 2 as a map to find the adiabatic 

magnetic susceptibility 

�� � ������� 

for a system, given complicated expressions for 

S in terms of B and T—sufficiently complicated that it 

is impossible to solve for M(B,S)

contributions from all possible paths on the map from 

dM to dB, and multiply together all the part

 

FIGURE 2: A chain rule diagram using differentials.
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This year we added a new week of hands-on 

activities that precede the Energy and Entropy course,  

which are intended to teach students the mathematics 

they will need in order to work with differentials and 

atives. These activities (discussed in more 

detail in two separate papers in these Proceedings [9, 

10]) use a mechanical analogue of thermodynamics, in 

which two distances and two forces play the roles of 

entropy, volume, temperature, and pressure. This 

lows students to grapple with partial derivatives (both 

literally and figuratively) in a field of physics that is 

comfortable. We use this elastic system to illustrate and 

teach everything from partial derivatives, total 

differentials, the thermodynamic identity (except that it 

is not thermodynamic), Maxwell relations and 

Chain Rule Diagrams 

Many homework and exam problems in 

thermodynamics expect students to be fluent in 

manipulating partial derivatives through the repeated 

of various chain rules. The common 

experience of becoming totally lost in this forest of 

equations contributes to students’ fear of this subject. 

Partial derivative diagrams are common to many 

[11, 12].  We have adapted 

l derivative diagrams to the language of 

which are anathema to many 

mathematicians. The reader can try using the chain rule 

2 as a map to find the adiabatic 
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a system, given complicated expressions for M and 

sufficiently complicated that it 
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contributions from all possible paths on the map from 

, and multiply together all the partial 

 

A chain rule diagram using differentials. 

43



derivatives that lie on a given path. More information 

on this strategy can be found in [13-15]. 

DISCUSSANTS 

Ayush Gupta 

My first reaction to the activities was one of 

curiosity, playful confusion, and a call to sense-

making. I felt drawn to start manipulating the partial 

derivative machine even before I was briefed formally 

on how the machine is supposed to work. Similarly, 

coming up to the “rubber-bands experimental set-up” 

naturally raised the question for me: Will the tension in 

the chain (connected to the rubber band) increase or 

decrease as the water is heated up?  The set-up invites 

one to start asking interesting inquiry questions. So the 

developed activities can open up pathways for students 

to start approaching the “feared” ideas of 

thermodynamics in a more playful manner. 

It is not clear to me whether my experience is 

typical of how the students experience these activities. 

While mine and the other authors’ intuition says that 

these activities should ease some of the fears 

traditionally associated with thermodynamics and help 

facilitate learning in that domain, I think that future 

work should aim to address (1) whether the activities 

have the intended effect (assessment) and (2) how the 

activities alleviate fear or facilitate learning 

(mechanism). This raises the following question: if a 

designed curriculum achieves the intended curricular 

goals, then why should we undertake the extensive 

work of showing how it works?  I have multiple 

reasons to argue that it is essential that we undertake 

that effort. 

For one, systematic research into how students 

approach learning in the context of these novel 

activities can help us refine the curriculum and its 

implementation [16, 17]. For example, while it was 

challenging and fun for me to play with arguments and 

counter-arguments for why the tension in the chain 

might increase as the rubber band is heated up, the 

focus of the analysis of the experiment is on the 

mathematics of entropy change as the rubber band is 

stretched—a much more structured activity. As a 

workshop participant, I felt I had the freedom to 

explore the question that came to my mind when I saw 

the set-up. As a student, would I have felt the same 

freedom to explore or would I have felt compelled to 

simply do what I was being told to do? What might the 

affective and conceptual consequences be for such a 

student?  What role do the epistemological messages 

embedded in the worksheet play in constraining how 

students approach the task? How students approach a 

task can significantly influence what knowledge 

resources they bring to bear and whether they are 

successful or not [18, 19]. Of course, with a diversity 

of students, there will be a diversity of ways in which 

they experience the activities. But my point is that 

exploring how students approach and experience the 

activities can help us better tailor the design and 

implementation of curriculum. 

Second, instructors are known to adapt rather than 

adopt curricular materials. So a more fleshed-out 

knowledge-base on how students approach these 

activities can help instructors adapt the activities to fit 

their instructional goals in a more informed manner. 

Finally, developing this knowledge-base can add 

fundamental knowledge to our understanding of how 

students approach learning physics and mathematics in 

the context of these novel activities that draw on 

students’ formal (physics, mathematics), informal 

(everyday sense-making), and kinesthetic knowledge. 

For example, recent work by Sian Beilock and Susan 

Fischer shows that students learn concepts such as 

angular momentum better if they are made to have 

sensorimotor experiences related to the concept [20]. 

Beilock and Fischer pose neurological mechanisms for 

why this might be the case: that the kinesthetic 

experience engages the motor system of the brain, 

which is also shown to be active when students later 

think about the concept without the physical 

stimulation. Does engaging students in kinesthetic 

experiences that involve partial derivatives work 

through a similar mechanism?  Or does learning partial 

derivatives via the partial derivative machine work 

through a different mechanism?  This knowledge-base 

can further spur the development of and research on 

such activities, more than if the community had access 

only to the designed activities. 

Joseph F. Wagner 

A particular appeal of some of these activities is 

their ability to engage students simultaneously in 

making sense of physics and making sense of 

mathematics. Many of the mathematical ideas used 

within these activities (e.g., partial derivatives, 

numerical integration) are known to students primarily 

or exclusively in the context of static, spatial/geometric 

interpretations typically used in mathematics 

classrooms. In the context of these activities, however, 

students are expected to apply their mathematical 

knowledge to model dynamically changing phenomena 

that they can experience, measure, and sometimes even 

feel kinesthetically. 

Traditional investigations of knowledge transfer ask 

how it is that something learned in one context is later 

used and applied in a new and different context. At 

face value, this would suggest that students need to 

take knowledge of mathematics that they already know 
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and “apply” it in the context of these activities. We 

know, of course, that students struggle to transfer their 

mathematical knowledge to these activities [7], quite 

possibly because of the mismatch between the static, 

geometric explanations and representations used in 

mathematics classrooms, and the dynamic and often 

non-spatial phenomena they need to model. This 

suggests that what occurs with students engaging in 

these activities is not simply an application of 

previously learned mathematical knowledge, but a 

refinement and development of that knowledge that is, 

in fact, transformed by their reasoning supported by the 

affordances of the new contexts. 

As an example, it is common for students to 

complete their calculus courses with an understanding 

of integration as a means of finding “area under a 

curve.” Even though more dynamic interpretations of 

integration as an accumulation of a changing quantity 

may receive some attention, the dominance of the 

spatial representations in mathematics classrooms 

maintains the “area under the curve” interpretation as 

primary, even exclusive. Only with the experience of 

new contexts, particularly contexts involving dynamic 

and non-spatial phenomena, are students able to 

develop a more broadly applicable understanding of 

integration as accumulation. From this perspective, the 

typical geometric and spatial representations and 

interpretations of central ideas in calculus should not 

be thought of as abstract (as I believe mathematicians 

tend to think of them), but rather as very particular 

contextual instantiations of mathematical ideas whose 

complexity cannot be adequately conveyed in such a 

limited context. 

I believe that activities such as those presented here 

offer opportunities for educational researchers in both 

physics and mathematics interested in student learning 

and cognition, especially for researchers interested in 

knowledge transfer. Consistent with my earlier 

work [21], I propose that students engaging in 

activities such as these do not transfer their existing 

knowledge into a new context but, rather, that their 

experiences in the new contexts challenge students to 

transform and refine their existing knowledge. As a 

result, we may expect to see as the fruit of these 

activities the simultaneous development of students’ 

knowledge of physics and mathematics. At least, this is 

my theory. If supporting evidence is to be found, these 

activities seem an ideal place to look for it. 

CONCLUSION 

We have presented a sequence of activities that 

ground thermodynamics in tangible, physical reality 

for students. Anecdotal evidence suggests that these 

activities contribute to removing the fear from 

thermodynamics 
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